10x^2+56=88-6x^2

Simple and best practice solution for 10x^2+56=88-6x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2+56=88-6x^2 equation:



10x^2+56=88-6x^2
We move all terms to the left:
10x^2+56-(88-6x^2)=0
We get rid of parentheses
10x^2+6x^2-88+56=0
We add all the numbers together, and all the variables
16x^2-32=0
a = 16; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·16·(-32)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*16}=\frac{0-32\sqrt{2}}{32} =-\frac{32\sqrt{2}}{32} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*16}=\frac{0+32\sqrt{2}}{32} =\frac{32\sqrt{2}}{32} =\sqrt{2} $

See similar equations:

| 3x+12=159 | | (2x-20)+2x+x=100 | | 8(w-6)=2w+12 | | 48+24+x=100 | | 13x+7+13x+6=180 | | x-20+2x+x=100 | | x+13x=33 | | 22=4(v-2)-7v | | 1/3(6x+9)=16 | | y-35+y+35=180 | | 2(2y-1)=3(4y+2) | | 2(2y-1)=3(4y+2 | | 1168.2-0.0046x-0.000012x^2=0 | | 3/7m-5.2=1.35+5/6m | | (5x+14)*0.5=3 | | 3/9m-5.2=1.35+5/6m | | 3x+8=5x-17 | | (3x)+(2x+20)=360 | | n+1/7=56 | | 3x+40=10x-9 | | 180=156+4x | | 6(x-4)=6(3x+2) | | 3,5x+16,5=28x-8 | | (3x+6)+(5x-4)=90 | | (3x+8)+(6x-28)=90 | | (x+21)+(3x-15)=180 | | (x+21)+(3x-15)=1080 | | 6x+12=9x+4 | | P-3=3p-111 | | 10x-14+2x+8=12x-6 | | (2x+4)+(3x+1)=90 | | 6k^2-34k+48=0 |

Equations solver categories